1	(a	(i)	hydrogen (atoms) NOT: substitute	replaced by (atoms) of a different element e.g. chlorine	[1]
		(ii)	light required		[1]
	(b)	exc enc	thermic reaction gi lothermic reaction a	ves out energy absorbs	[1]
		takes in energy		[1]	
	(c)	bor C- C <i>1</i> -	nds broken	energy +412 +242	
		tota	ll energy	+654	[1]
		bor C-C	ids formed 21	energy -338 -431	
		tota	ll energy	-769	[1]
		ene neg	ergy change jative sign indicates	–115 s exothermic	[1] [1]
					[Total: 8]
2	(a)	Zn	+ $H_2SO_4 \rightarrow ZnSO_4$	$D_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$	[2]
		mai If io	ks are for correct r nic equation is give	eactants [1] correct products [1] en don't penalise SO ₄ ² spectator ions on both sides	
	(b)	(ex	othermic because)	a cell produces (electrical) energy/electricity	[1]
		the next two marks score for			
		eleo / tw	ctrons are lost AND o correct half equa	gained / oxidation no. or state/valency both increases and tions i.e. $Zn \rightarrow Zn^{2+} + 2e$ and $2H^+ + 2e \rightarrow H_2$	decreases [2]
	(c)	zinc cond it is the more reactive metal / it supplies electrons / it forms ions more readily than iron [1			[1] / than iron [1]
	(d)	repl repl use acc	ace zinc with magr ace iron with coppe (more) concentrate ept use a <u>more</u> cor	nesium er ed <u>sulfuric</u> acid ncentrated acid / a <u>more</u> concentrated solution	
		any	two		[2]

3	(a) (i)	any Group 1 metal accept: LiOH	[1]
	(ii)	$Cu(OH)_2 \rightarrow CuO + H_2O$ note: products only = 1	[2
	(iii)	reactivity of metals / metals have different reactivities	[1]
	(b) (i)	zinc oxide, nitrogen dioxide, oxygen note: two correct = 1	[2]
	(ii)	$2KNO_3 \rightarrow 2KNO_2 + O_2$ note: unbalanced = 1, correct word equation = 1	[2]
	(c) ca <i>M</i> r <i>M</i> r	culation: for NaHCO ₃ = 84 g; <i>M</i> _r for Na₂O = 62 g; <i>M</i> _r for NaOH = 40 g for Na₂CO₃ = 106 g	
	(i)	number of moles of NaHCO ₃ used = $3.36/84 = 0.04$	[1]
	(ii)	if residue is Na ₂ O, number of moles of Na ₂ O = $2.12/62$ = $0.034 / 0.03$	
		if residue is NaOH, number of moles of NaOH = 2.12/40 = 0.053 / 0.05	
		if reside is Na_2CO_3 , number of moles of $Na_2CO_3 = 2.12/106 = 0.02$ all three correct note: two correct = 1	[2]
	(iii)	equation 3 mole ratio 2:1 agrees with equation	[1] [1]

4	(a	fractional distillation				
	(b)	(i)	O=O / oxygen(–)oxygen / H–H / hydrogen(–)hydrogen	[1]		
		(ii)	O-H / oxygen(–)hydrogen / OH / bond between hydrogen and oxygen not H-O-H	[1]		
		(iii)	endothermic.	[1]		
	(c)	(i) (ii)	no pollution / no CO / no CO ₂ / no oxides of nitrogen / <u>only</u> produces steam or water / no greenhouse gases / no global warming does not use up fossil fuels / water is not a finite resource / water is a renewable source of energy / hydrogen is renewable / available from electrolysis of water obtaining hydrogen from water requires fossil fuels / storage problems / transp problems / limited range of vehicles available / gaseous nature means only produ	[1] [1] cort ces		
			small amount of energy per unit volume / methane as a source of steam reforming finite / lack of distribution network not expensive / anything regarding safety / flammability / explosiveness] IS [1]		
5	(a	(tota (tota acc	al endothermic change = 436 + 242 = +)678 kJ al exothermic change = 2 × 431 = -)862 kJ cept correct sign/supplied/absorbed for endo etc.	[1] [1]		
		cha	inge for reaction = -184 kJ	[1]		
not necessary to calculate –184, just show that exe ecf allowed provided negative –184 kJ scores all 3 mark			necessary to calculate –184, just show that exo change > than endo allowed provided negative 34 kJ scores all 3 mark			
	(b)	I	because it accepts a proton accepts hydrogen ion or H ⁺ ONLY [1] proton and H ⁺ [2]	[2]		
		(ii)	hydrogen chloride is a strong acid hydrogen fluoride is a weak acid weaker or stronger correctly applied for [2]	[1] [1]		
		(iii)	hydrogen chloride (aqueous) would have low <u>er</u> pH OR hydrogen fluoride (aqueous) would have high <u>er</u> pH If values suggested, not over 7	[1]		
			[Total	: 8]		

•				F 4 7	
6	(a)		(fine powder) large surface area high/faster/collision rate/more collisions/fast collisions	[1]	
			(between solid and oxygen in air)	[1]	
	((ii)	carbohydrate + oxygen → carbon dioxide + water ACCEPT flour	[1]	
	(b)	(b) rate depends on light more light more silver or blacker thicker card less light			
	(c)	(i)	<u>biological catalyst</u> accept protein catalyst	[1]	
	((ii)	production of energy (from food) by living "things" or by cells, etc.	[1] [1]	
	(i	(iii) "kill" yeast or denature enzymes (due to increase in temperature)			
	(i	iv)	all <u>glucose</u> used up yeast "killed" or denatured or damaged by <u>ethanol/alcohol</u>	[1] [1]	
	((v)	filter or centrifuge <u>fractional distillation</u>	[1] [1]	
				[Total: 14]	
7	(a)	(i)	Zn(OH) ₂ = ZnO + H ₂ O reactant [1] products [1]	[2]	
		(ii)	it would melt or it does not decompose or it does not react NOT no change	[1]	
		(iii)	blue (solid) to black (solid) brown <u>gas</u>	[1] [1] [1]	
			Mark consequentially to any error but not involving simple integers There has to be some evidence that the candidate has attempted to work through the calculation and not merely inserted whole numbers. For example 2, 1, 160 or 1, 0.5, 80 number of moles of $Fe_2(SO_4)_3 = 1/40$ or 0.025 number of moles of Fe_2O_3 formed = $1/40$ or 0.025 mass of iron(III) oxide formed = $0.025 \times 160 = 4g$ number of moles of SO_3 produced = $3/40$ or 0.075 volume of sulphur trioxide at r.t.p. = 0.075×25 = $1.8dm^3$	[5]	

TOTAL = 11